# 一些技巧
# 常见的贪心技巧
货币使用问题:
尽可能少用,那么我们就先拿面值最大的,依次往下走,最后拿光了即可。
区间调度问题:
工作时间不能重叠,在可选工作中,每次都选取结束时间最早的作为选择,可以使工作量最大。
# 切题小技巧
- 递归,从后向前
 - 预处理
 - 划分子结构
 - 单调队列、滑动窗口
 - 能剪的枝一定要减!能剪的枝一定要减!能剪的枝一定要减!
 - 但是剪枝别剪挂了……
 
# 手动扩栈
编译时指定参数
-Wl,--stack=size  | 
size 是栈的大小,单位为字节。


# 一些题
# P5686 [CSP-SJX2019] 和积和
#include <stdio.h> | |
#include <string.h> | |
#include <iostream> | |
using namespace std;  | |
typedef long long ll;  | |
const int N = 500005, P = 1e9+7;  | |
int n;  | |
ll a[N], b[N], sa[N], sb[N], s[N], ssa[N], ssb[N];  | |
int main() {  | |
scanf("%d", &n);  | |
for(int i=1; i<=n; ++i) scanf("%lld", a+i);  | |
for(int i=1; i<=n; ++i) scanf("%lld", b+i);  | |
ll ans = 0, s = 0, sa = 0, sb = 0;  | |
for(int i=n; i>=1; --i) {  | |
sa += a[i]*(n+1-i)%P; sa%=P; sb += b[i]*(n+1-i)%P; sb%=P;  | |
ll del = ((a[i]*sb%P + b[i]*sa%P)%P + P - a[i]*b[i]%P*(n-i+1)%P)%P;  | |
s += del; s %= P;  | |
ans += s; ans %= P;  | |
	} | |
printf("%lld\n", ans);  | |
return 0;  | |
} | 
# U129453 「EZEC-4.5」占座位
题解
#include <bits/stdc++.h> | |
using namespace std;  | |
typedef long long ll;  | |
map<ll, ll> f;  | |
ll n, k;  | |
ll dfs(ll n) {  | |
if(f[n]) return f[n];  | |
if(n < 2*k+2) return f[n] = 1;  | |
return f[n] = dfs(n/2) + dfs(n-n/2);  | |
} | |
int main() {  | |
scanf("%lld%lld", &n, &k);  | |
if(k == 0) printf("%lld\n", n); else printf("%lld\n", dfs(n));  | |
return 0;  | |
} | 
# P1182 数列分段 Section II
#include <stdio.h> | |
#include <string.h> | |
#include <iostream> | |
using namespace std;  | |
typedef long long ll;  | |
const int N = 1e5 + 10;  | |
int n, m; ll a[N];  | |
bool check(ll v) {  | |
ll sum = 0, pt = 0;  | |
int i=1;  | |
while(i<=n) {  | |
while(i<=n && sum + a[i] <= v) {  | |
sum += a[i];  | |
++i;  | |
		} | |
++pt; if(pt > m) return false; sum = 0;  | |
	} | |
return true;  | |
} | |
int main() {  | |
	//freopen("p1182_1.in","r",stdin); | |
scanf("%d%d", &n, &m);  | |
ll l=1, r=1e9;  | |
for(int i=1; i<=n; ++i) {  | |
scanf("%lld", a+i);  | |
l = max(l, a[i]);  | |
	} | |
while(l < r-1) {  | |
ll mid = l+(r-l)/2;  | |
if(check(mid)) r=mid;  | |
else l=mid+1;  | |
	} | |
if(check(l)) printf("%lld\n", l); else printf("%lld\n", r);  | |
return 0;  | |
} | 
# P2822 [NOIP2016 提高组] 组合数问题
#include <stdio.h> | |
#include <string.h> | |
#include <iostream> | |
using namespace std;  | |
const int N = 2200, INF = 0x3f3f3f3f;  | |
int c[N][N], sum[N][N];  | |
int T, k;  | |
int main() {  | |
scanf("%d%d", &T, &k);  | |
c[0][0] = 1;  | |
for(int i=1; i<=2000; ++i) {  | |
c[i][0] = 1;  | |
for(int j=1; j<=i; ++j) {  | |
c[i][j] = c[i-1][j-1] + c[i-1][j];  | |
c[i][j] %= k;  | |
		} | |
	} | |
for(int i=0; i<=2000; ++i) {  | |
for(int j=0; j<=i; ++j) {  | |
sum[i][j] = (c[i][j] == 0);  | |
		} | |
	} | |
for(int i=0; i<=2000; ++i) {  | |
for(int j=1; j<=2000; ++j) {  | |
sum[i][j] += sum[i][j-1];  | |
		} | |
	} | |
for(int j=0; j<=2000; ++j) {  | |
for(int i=1; i<=2000; ++i) {  | |
sum[i][j] += sum[i-1][j];  | |
		} | |
	} | |
while(T--) {  | |
int n, m;  | |
scanf("%d%d", &n, &m);  | |
printf("%d\n", sum[n][min(n,m)]);  | |
	} | |
return 0;  | |
} | 
# P1007 独木桥
求最大时间时,把碰面想象成交换身份即可
#include <stdio.h> | |
#include <string.h> | |
#include <iostream> | |
using namespace std;  | |
int l, n, p[5005];  | |
int main() {  | |
scanf("%d%d", &l, &n);  | |
for(int i=1; i<=n; ++i) scanf("%d", p+i);  | |
int ans1 = 0;  | |
for(int i=1; i<=n; ++i) {  | |
ans1 = max(ans1, min(p[i], l+1-p[i]));  | |
	} | |
int ans2 = 0;  | |
for(int i=1; i<=n; ++i) {  | |
ans2 = max(ans2, max(p[i], l+1-p[i]));  | |
	} | |
printf("%d %d\n", ans1, ans2);  | |
return 0;  | |
} | 
# P3958 [NOIP2017 提高组] 奶酪
自底至上找出通路,可以联想到森林合并。
#include <stdio.h> | |
#include <string.h> | |
#include <iostream> | |
#include <algorithm> | |
using namespace std;  | |
typedef long long LL;  | |
const int N = 1100;  | |
struct node {  | |
LL x, y, z;  | |
} a[N];  | |
bool cmp(node a, node b) {  | |
return (a.z < b.z);  | |
} | |
bool tp[N], bt[N];  | |
int fa[N], T, n;  | |
LL h, r;  | |
int root(int x) {  | |
return fa[x]==x?x:root(fa[x]);  | |
} | |
bool check(int i, int j) {  | |
LL dist = (a[i].x-a[j].x)*(a[i].x-a[j].x) + (a[i].y-a[j].y)*(a[i].y-a[j].y) + (a[i].z-a[j].z)*(a[i].z-a[j].z);  | |
return dist <= 4*r*r;  | |
} | |
int main() {  | |
scanf("%d", &T);  | |
while(T--) {  | |
scanf("%d%lld%lld", &n, &h, &r);  | |
memset(bt, false, sizeof bt);  | |
memset(tp, false, sizeof tp);  | |
for(int i=1; i<=n; ++i)  | |
scanf("%lld%lld%lld", &a[i].x, &a[i].y, &a[i].z);  | |
sort(a+1, a+n+1, cmp);  | |
for(int i=1; i<=n; ++i) {  | |
if(a[i].z - r <= 0) bt[i] = true;  | |
if(a[i].z + r >= h) tp[i] = true;  | |
		} | |
for(int i=1; i<=n; ++i) fa[i] = i;  | |
for(int i=1; i<=n; ++i) {  | |
for(int j=i+1; j<=n; ++j) {  | |
if(check(i, j)) {  | |
fa[root(i)] = root(j);  | |
				} | |
			} | |
		} | |
bool fla = false;  | |
for(int i=1; i<=n; ++i) {  | |
if(bt[i] && tp[root(i)]) {  | |
fla = true;  | |
break;  | |
			} | |
		} | |
printf("%s", (fla ? "Yes\n" : "No\n"));  | |
	} | |
return 0;  | |
} | 
